

JET/MET meeting, 15 June, 2001

Charged Higgs in tH⁺, H⁺ -> τν testing the Jet Energy Corrections

R. Kinnunen
Helsinki Institute of Physics

Data (OODigis) on FNAL User Federation:

10000 events for
$$m_{H_{+}} = 200 \text{ GeV}$$
, $L = 10^{33} \text{ cm}^2 \text{s}^{-1}$

- \rightarrow 10000 events for m_{H+} = 200 GeV, $L = 10^{34} \text{ cm}^2 \text{s}^{-1}$
- → 10000 events for $m_{H+} = 400 \text{ GeV}$, $L = 10^{33} \text{ cm}^2 \text{s}^{-1}$ 10000 events for $m_{H+} = 400 \text{ GeV}$, $L = 10^{34} \text{cm}^2 \text{s}^{-1}$ No BG samples yet

Previous results for $m_{H+} = 200 \text{ GeV}$, $L = 10^{34} \text{ cm}^2 \text{s}^{-1}$

Algorithm:

- **Reconstruction of all jets (max. 6) with \Delta R = 0.5**
- ♦ Selection of b and q jets matching with the directions of generated quarks in top -> bqq
- **Reconstruction of \tau jet around MC \tau -> hadrons with \Delta R = 0.4**
- **Reconstruction of MET**
- Use generated tracks

Reconstructed / generated object

 $m_{H+} = 400 \text{ GeV}, L = 10^{33} \text{ cm}^2 \text{s}^{-1}$

Jet reconstruction cone: $\Delta \mathbf{R} = \mathbf{0.4}$ for τ jet

$m_T(E_t^{\tau-jet}, E_t^{miss}), m_{H+} = 200 \text{ GeV}, L = 10^{34} \text{ cm}^2 \text{s}^{-1}$

Generated τ jet and E_t^{miss}

Reconstructed τ jet and E_t^{miss}

 $\Delta R(\tau \rightarrow hadrons, jet) < 0.4$

$m_T(E_t^{\tau-jet}, E_t^{miss}), m_{H+} = 400 \text{ GeV}, L = 10^{33} \text{ cm}^2 \text{s}^{-1}$

Reconstructed τ jet and E_t^{miss} , no selection cuts

EM component of the τ jet: $E_t^{\ EM}$ / $E_t^{\ \tau\text{-jet}}$

EM energy collected in $\Delta R < 0.4$

Fraction of τ jet energy carried by the leading pion

Polarization with TAUOLA, all hadronic τ decay modes, MC tracks

$$m_{H+} = 400 \text{ GeV}, 10^{33} \text{cm}^2 \text{s}^{-1}$$

Efficiency for $p^{\pi} / E^{\tau - jet} > 0.8$: efficiency in fast simulation:

W and top reconstruction, no jet energy corrections

$$m_{H+} = 200 \text{ GeV}, 10^{34} \text{cm}^2 \text{s}^{-1}$$

jet reconstruction cone = 0.5, $E_t^{jet} > 30 \text{ GeV}$

Jets with best matching with W -> qq' and t -> bqq', $\Delta R(jet,q) < 0.4$

q and q' assigned to the same jet $\sim 0.7\%$

W and top reconstruction with jet E_t corrections for $10^{34} cm^2 s^{-1}$

 $m_{H+} = 200 \text{ GeV}, 10^{34} \text{cm}^2 \text{s}^{-1}$

jet reconstruction cone = 0.5, $E_t^{jet} > 30 \text{ GeV}$

Jets with best matching with W -> qq' and t -> bqq', $\Delta R(jet,q) < 0.4$

W and top reconstruction with jet E_t corrections for $10^{33} cm^2 s^{-1}$

 $m_{H+} = 400 \text{ GeV}, 10^{33} \text{cm}^2 \text{s}^{-1}$

jet reconstruction cone = 0.5, $E_t^{jet} > 30 \text{ GeV}$ Jets with best matching with W -> qq' and t -> bqq', $\Delta R(\text{jet,q}) < 0.4$

W and top reconstruction with CMSJET, no pile-up

 $m_{H+} = 400 \text{ GeV}, 10^{33} \text{cm}^2 \text{s}^{-1}$

jet reconstruction cone = 0.5, $E_t^{jet} > 20 \text{ GeV}$

Jets with best matching with W -> qq' and t -> bqq', $\Delta R(jet,q) < 0.4$

E_t measured jet vs p_t^{q,b}

with jet E_t corrections for $10^{33} \text{cm}^2 \text{s}^{-1}$

E_t measured / E_t MC jet vs E_t MC jet

with jet energy corrections, 10^{33} cm²s⁻¹

 $\Delta R(q,jet) < 0.4$, $\Delta R(b,jet) < 0.4$, $\Delta R(q,MC jet) < 0.4$

b jet from top: E_t measured / E_t MC jet

Muons in tH^+ , $H^+ \rightarrow \tau \nu$, $t \rightarrow jjb$ from b decays

muon with $p_t^{\mu} > 5$ GeV in ~ 16% of events

add muons to the b-jet if $\Delta R(\mu\text{-bjet}) < 0.5$, $p_t^{\mu} > 5$ GeV

Conclusions

Preliminary results from ORCA simulation:

- The Jacobian structure of $m_T(\tau$ -jet, E_t^{miss}) is preserved in the signal events, no background simulation yet
- **■** W and top mass resolution with jet energy corrections:

	\mathbf{W}	top
CMSJET, no pileup	11%	9.5%
low luminosity	15%	16%
low luminosity, with muons	15%	12%
high luminosity	16%	22%